Russian
Главная Показать материаллы по тэгам: аквариум

Мы приобрели у очень известной немецкой фирмы проект морского аквариума или, скорее всего, океанариума, который был ею построен в 2003 году в Берлине, в холле гостиницы. Больше всего, конечно, нас интересовала система фильтрации.

Очевидцы этого сооружения рассказывали, что стояли в оцепенении минут 20, когда это увидели вживую!

Технические данные океанариума:

  1. Общий объем воды 1300 м3.
  2. Воды в аквариуме 900 м3.
  3. Система фильтрации состоит из: предварительного механического фильтра, биофильтра, пеноотделительной колонки, воздушного компрессора и озонатора.

Если кто-то желает реализовать подобный проект, то мы с радостью вам поможем в этом.

Категория: Обзоры и статьи

Это тоже самое, что и для пресноводной системы, только для морских, замкнутых систем этот вопрос особенно остро стоит, т.к. pH равен 8,2-8,5, и нужно точно знать сколько сейчас в воде находиться аммиака.

Эта короткая программа (Microsoft Excel) рассчитывает содержание аммиака в морской воде, как функция pH, общего аммония, температуры и солености.

Программу выложили здесь, т.к. к нам много людей обращаются за расчетами для больших морских аквариумов, и расчетов систем передержки морской рыбы.

Скачать: ammonia_sea.xls

Категория: Программы

Эта небольшая программа (Microsoft Excel) вычисляет содержание аммиака в пресной воде, как функцию pH, общего аммония, температуры и силы ионов.  Сила ионов вычисляется либо при помощи концентрации общих растворенных солей (TDS), либо при помощи электрической проводимости. Только один из этих параметров должен быть определен. Если вы не знаете какая у вас Проводимость или TDS, поставьте нуль в одной из ячеек. Можно изменять значения в строке 15, столбцы с B по F.

Программа использует единицы измерения общего аммония, пересчитанного на азот и в тех же самых единицах вычисляется аммиак.

Актуальность темы заключается в том, что в основном, большинство водных животных выделяет излишки азота в виде смеси ионов аммония (NH4+) и растворенного аммиака (NH3). Те же процессы происходят при разложении в воде мертвого органического вещества (животных и растений, чешуи, слизи и других выделений, не съеденного корма и т.п.).

Аммиак в растворе превращается в аммоний, присоединив к себе ион водорода, аммоний превращается в аммиак, отдав ион водорода. Чем больше в воде свободных ионов водорода (т.е. чем ниже pH), тем больше в ней будет аммония и меньше аммиака, и наоборот. Токсичность аммония (NH4+) намного ниже, чем у аммиака (NH3).

Следовательно, при высоком pH (7,5-8,0) проблема аммиачного отравления существенно выше, чем при низком pH. Обычные тесты на общий аммоний (NH3 & NH4+) показывают содержание в воде суммы ионов аммония (NH4+) и растворенного аммиака (NH3). Для определения содержания токсичного аммиака и предназначена эта программа.

Удобна для принятия экстренных мер, если у вас в замкнутой системе резко возрос общий аммоний (например: неправильная работа биофильтра). Чтобы избежать аммиачного отравления рыб, вы легко можете подсчитать на сколько надо уменьшить pH воды, что бы концентрация аммиака уменьшилась до нетоксичного уровня. Также можно быстро заменить воду в системе, правда, обычно нет столько чистой и теплой воды под рукой.

Специалисты по аквакультуре могут оценить точность вычислений.

Скачать: ammonia_fresh.xls

Категория: Программы

Как выглядят аквариумы "АкваМир"

 

Основная проблема, которая была успешно решена, это создание баланса между всеми продукционными (П) и деструкционными (Д) процессами в замкнутой экосистеме.

Например, выделение кислорода на свету водорослями и поглощение его в процессе дыхания креветками. Математическая модель этого процесса очень сложна и описывает движение макро и микроэлементов. Прямого решения этой задачи пока не существует. Поэтому мы пошли на хитрость, все живые системы могут сами себя стабилизировать, следовательно, если создать баланс по некоторым элементам, например, кислороду, то остальные элементы сами стабилизируются.

Оптимальным для функционирования водной экосистемы является сбалансированность процессов продукции и деструкции (П:Д=1). В евтрофированном водоеме П:Д>1, т.е. наблюдается чрезмерное накопление органического вещества из-за избытка биогенных элементов. При перегрузке водоема попавшими из вне органическими веществами П<Д, в чистых водах, как уже указывалось, процессы сбалансированы, П=Д.

Таким образом, соотношение величин продукции кислорода и его использования в процессах деструкции относится к числу интегральных показателей санитарно-биологического состояния экосистемы и качества воды.

Дроздов Н.Н. покупал у нас шарик дочке на день рождения!

 

В гостях за чашкой чая у ведущего программы в мире животных Николай Николаевича Дроздова.
Угадайте, что лежит столе?

Океанолог, кандидат наук Василий Всеволодович Краснобородько два раза участвовал в съемках телепередачи "В мире животных", где он рассказывал об удивительном маленьком мирке, который живет на письменном столе сам собой.

Наш мини-аквариум дарят на день рождения

 

У нас покупали "АкваМир" не только телезвезды, но и министры, политики и даже выше!

Заказать Аквамир можно на сайте: http://www.bio-sphere.com/

Наш самый старый мини-аквариум,созданный в 1999 году, до сих пор жив!

 

Девушке Оли подарили наш герметичный аквариум в 1999 году, когда ей было 9 лет на день рождение. Самое интересное, что аквариум до сих пор жив. В нем живут креветки, улитки и растение.

Более подробно можно ознакомиться с фотками и информацией на нашем блоке: Про автономный аквариум, который живет с 1999 года!

Категория: Все проекты

Основная цель проводимого эксперимента -  проверить точность математической модели, описывающей замкнутую экосистему по питательным элементам. Изложенный ниже материал дополнительно отредактирован для широкого круга читателей, исключены формулы и сложные описания.

Общий вид экспериментальной установки:

  • в белом пластиковом бассейне жила сотня сибирского осетра ("Ленский" осетр), слева была расположена гидропонная установка (с колеблющимся уровнем воды) для выращивания салатов, клубники или томатов, справа - система фильтров и баллон с сжатым кислородом;
  • в песочном фильтре вместо песка использовались пластиковые гранулы, основная цель которых заключалась в возможности заселения их нитрифицирующими бактериями, а также для задержки взвешенных частиц, нерастворенных в воде, размером более чем 100 микрон. Такой модифицированный фильтр является одновременно и биофильтром, и механическим фильтром. Во избежание образования застойных зон (анаэробных) и закупорки биофильтра, часто проводилась обратная промывка фильтра;
  • производилось отстаивание промывочной воды и использование твердого осадка для компоста;
  • была установлена система аварийной сигнализации (собрана из охранной сигнализации), которая передавала сигнал на сотовый телефон главного разработчика. Ко входным реле подключены три датчика: наличие электричества в офисе, концентрация кислорода в воде и уровень воды в бассейне с рыбой.

Схема рыбной фермы работающей по принципу аквапоники

Разработал и собрал установку Краснобородько В.В. в 1993 году.

Перед началом эксперимента были выбраны параметры воды, которые необходимо было поддерживать в течение опыта:

1. Для осетра:

- максимальная концентрация аммиака, мг/л;
- максимальная концентрация общего аммония (была вычислена, зная pH и температуру воды), мг/л;
- максимальная концентрация нитрита, мг/л;
- максимальная концентрация нитрата, мг/л;
- максимальная концентрация нерастворенных взвешенных частиц, мг/л;
- максимальная концентрация углекислого газа, мг/л;
- минимальная концентрация кислорода, мг/л;
- температура воды, С;
- диапазон pH воды (с учетом потребности растений);
- диапазон щелочности воды (был вычислен с учетом зависимости от pH и от CO2), мг/л как CaCO3;
- диапазон жесткости воды, мг/л как CaCO3.

2. Для клубники:

- максимальная концентрация растворенных веществ, мг/л;
- оптимальные концентрации макро и микроэлементов: Ca, Mg, K, N (как NO3), P (как PO4), S (как SO4), Cl, Fe, Mn, Cu, Zn, B, Mo.


3. Для корректировки pH воды применялись: KOH, CaO, Ca(OH)2  (как известно, продукты жизнедеятельности рыб понижают pH, а растения, наоборот, повышают. В данном случае окислительные процессы доминировали).

Первые опыты с интеграцией аквариума и клубники

Результаты эксперимента

Был накоплен большой экспериментальный материал, включающий в себя: динамику основных питательных элементов (NO3, PO4, SO4, K, Ca и Mg), поступающих с кормом для рыб и аккумулировавшихся в рыбе, растениях и твердых отходах. Вода в результате этого эксперимента никуда не выливалась, а повторно использовалась. Потери воды состояли только из испарения. Корректировка pH осуществлялась два раза в день (особенно в конце опыта, когда биомасса осетра значительно возросла),  корректировка же микроэлементов - раз в неделю. Макроэлементы не добавлялись, т.к. поступали с кормом для рыб, кроме калия и кальция, которые добавлялись в виде гидроксидов в зависимости от того, чего не хватало.


Математическая модель поведения такой биосистемы в конце опыта была доведена до совершенства. Удавалось даже без дорогостоящих тестов достаточно точно предсказывать текущие концентрации макроэлементов в воде, количество гидроксидов, необходимых для корректировки pH воды, а также некоторых микроэлементов.

Важность непрерывного контроля

Эксплуатация подобных замкнутых систем (с оборотным водоснабжением) требует обязательного присутствия обученного оператора в течение 24 часов. Это важно для быстрого устранения поломок в системе жизнеобеспечения рыб. Если плотность посадки рыб большая (автор доводил до 400 кг/м3) - для достижения максимального урожая и уменьшения расходов на отопление помещения, то возрастает  вероятность поломки узлов вашей установки. Например, при прекращении снабжения рыбы кислородом, вы рискуете через 20 минут лишиться всего поголовья рыбы!

Критичный интервал времени:

Счет идет на минуты

Отсутствие электричества, падение уровня воды в бассейнах, прекращение аэрации воздухом или чистым кислородом
Счет идет на часы Температура, CO2, pH
Счет идет на дни Щелочность воды, Аммоний - Аммиак, Нитрит, Нитрат

Взгляд на проектирование биосфер

Эксплуатация системы, в которой совместно выращивается рыба и сельскохозяйственные растения - очень сложное дело, требующее  знаний из трех совершенно разных, на первый взгляд, областей науки. Это аквакультура (рыбоводство),  гидропоника (тепличное хозяйство) и микробиология (культивирование бактерий в биофильтре). Животные, растения и бактерии - вот эти три действующих "лица" в любой замкнутой биологической системе, которые живут в симбиозе друг с другом. Первое описание такого совместного сосуществования дал в прошлом веке В. И. Вернадский и назвал его "Учение о Биосфере"!

Однако не все так сложно, как кажется на первый взгляд. Организмы, живущие на Земле, довольно трудно уничтожить, по крайне мере, простые формы жизни. Если описать поведение таких трех китов как: животные,  растения и бактерии или, назовем их по-другому, потребители, производители и деструкторы, то получиться дифференциальное уравнение 2-го порядка, которое не имеет прямого решения. Но мы то знаем, что жизненные формы живучи, более того, способны подстраиваться под изменяющиеся условия окружающей среды, поэтому незачем стараться учитывать все химические элементы, а достаточно сконцентрироваться на так называемых "маркерах". По остальным химическим элементам система сама себя приведет в равновесие. Поэтому уравнение упрощается и становится вполне решаемым. В этом и заключается основная идея математической модели Краснобородько Василия. Благодаря такому подходу, удалось довольно точно рассчитывать полностью замкнутые системы и разработать методику производства запаянных живых аквариумов.

Возможно посмотрев примеры живых аквариумов, вы спросите, почему производятся только такие маленькие аквариумы с креветками, а не с рыбками? Ответ простой, что бы создать полностью замкнутую систему для маленькой рыбки, то потребуется объем минимум 200 литров воды. Собирать придется в лабораторных условиях, а взять аквариум домой будет проблематично - весить будет 200 кг.

Пример с домашним аквариумом

Зачем нужна данная технология

Для выращивания теплолюбивых видов рыб важным критерием является температура воды. В нашей климатической зоне  (Латвия) при обычном способе (например, садковый) можно выращивать осетра только 4-5 месяцев в году. Все остальное время осетр не питается и, соответственно, не растет. Поэтому он вырастает от 3 граммового малька до товарного веса 1 кг за 2- 3 года. Оптимальной температурой для роста осетра является 20°С-24°С. Подогревать воду на осетровом заводе - это тупик. Невозможно подогреть 200 м3/ч воды с 10°С до 24°С - для этого не хватит и целой электростанции!

Единственный выход из этого положения: сделать высокую посадку осетров в бассейнах и не использовать воду из реки, а очищать и не выпускать теплую воду из системы (осетр + клубника). Тогда можно всю установку разместить в отапливаемом помещении и держать температуру 20°С-24°С. Предварительные результаты показали, что можно получать до 80 кг осетра с м2 бассейна глубиной 1 м в год и 10 кг клубники с этой же площади. Осётр -  хищник, поэтому  корни растений не представляют для него интереса.

Себестоимость осетра при таком способе падает в несколько раз! Значит можно создать производство рыб на основе такой технологии. При способе выращивания в установках замкнутого водоснабжения достигается малый расход комбикорма - на 1 кг осетра расходуется 1,5 кг комбикорма, против 3 кг комбикорма при прудовом выращивании. Почему это так, понять не сложно: при прудовом разведении рыб у вас есть период зимовки, когда температура воды становиться низкой. Рыба перестает питаться и, соответственно, не набирает вес, а худеет. Летом вы ее кормите, а зимой она худеет. В замкнутой системе вы можете держать температуру воды теплой, и у вас нет периода зимовки. Рыба ест, набирает вес, расход корма получается ниже в 2 раза! Ни один рыбхоз не сможет конкурировать.

Видеоролик на youtube.com

 

Категория: Все проекты

Russian Chinese (Traditional) Danish English Estonian Finnish French German Greek Hindi Italian Japanese Latvian Lithuanian Norwegian Polish Portuguese Spanish Swedish Ukrainian Yiddish

Rambler's Top100 Рейтинг@Mail.ru Яндекс цитирования Valid XHTML 1.0 Transitional Valid CSS!